Contents

	Preface	vii		
	List of Tables			
	Topical Problems	xvii		
PART I	ELEMENTARY PRINCIPLES AND APPLICATIONS TO PROBLEMS IN ONE DIMENSION	1		
1	Review of Concepts of Classical Mechanics	3		
	1.1 Generalized or "Good" Coordinates 3			
	1.2 Energy, the Hamiltonian, and Angular Momentum 6			
	1.3 The State of a System 19			
	1.4 Properties of the One-Dimensional Potential Function 24			
2	Historical Review: Experiments and Theories	30		
	2.1 Dates 30			
	2.2 The Work of Planck. Blackbody Radiation 31			
	2.3 The Work of Einstein. The Photoelectric Effect 36			
	2.4 The Work of Bohr. A Quantum Theory of Atomic States 39			
	2.5 Waves versus Particles 43			
	2.6 The de Broglie Hypothesis and the Davisson–Germer Experiment 46			
	2.7 The Work of Heisenberg. Uncertainty as a Cornerstone of Natural			
	Law 53			
	2.8 The Work of Born. Probability Waves 55			
	2.9 Semiphilosophical Epilogue to Chapter 2 57			

3		The Eige	Postulates of Quantum Mechanics. Operators, nfunctions, and Eigenvalues	68
		3.1	Observables and Operators 68	
		3.2	Measurement in Quantum Mechanics 74	
		3.3	The State Function and Expectation Values 76	
		3.4	Time Development of the State Function 80	
		3.5	Solution to the Initial-Value Problem in Quantum Mechanics 84	
4		Prep	paratory Concepts. Function Spaces and	
		Her	mitian Operators	90
		4.1	Particle in a Box and Further Remarks on Normalization 90	
		4.2	The Bohr Correspondence Principle 94	
		4.3	Dirac Notation 97	
		4.4	Hilbert Space 98	
		4.5	Hermitian Operators 104	
		4.6	Properties of Hermitian Operators 108	
5		Sup	erposition and Compatible Observables	115
		5.1	The Superposition Principle 115	
		5.2	Commutator Relations in Quantum Mechanics 130	
		5.3	More on the Commutator Theorem 137	
		5.4	Commutator Relations and the Uncertainty Principle 140	
		5.5	"Complete" Sets of Commuting Observables 143	
6		I Tim	ne Development, Conservation Theorems, and Parity	152
		6.1	Time Development of State Functions 152	
		6.2	Time Development of Expectation Values 168	
		6.3	Conservation of Energy, Linear and Angular Momentum 171	
		6.4	Conservation of Parity 176	
-	7 :	Ad	ditional One-Dimensional Problems. Bound and	
		Un	bound States	187
		7.1	General Properties of the One-Dimensional Schrödinger Equation 187	
		7.2		
		7.3	100	
		7.3		
		7.4		
		7.6		

ontents	on	tents	
---------	----	-------	--

	Conte	nts	ix
	7.7 7.8	The Rectangular Barrier. Tunneling 228 The Ramsauer Effect 235	
	7.9	Kinetic Properties of a Wave Packet Scattered from a Potential Barrier 241	
	7.10	The WKB Approximation 243	
	7.11	Principle of Least Action and Feynman's Path Integral Formulation 268	
		e Potential Well, Periodic Lattice, and Some Simpl	
		olems with Two Degrees of Freedom	278
	8.1	The Finite Potential Well 278	
	8.2	Periodic Lattice. Energy Gaps 289	
	8.3 8.4	Standing Waves at the Band Edges 307 Brief Qualitative Description of the Theory of Conduction in Solids 313	
	8.5	Two Beads on a Wire and a Particle in a Two-Dimensional Box	317
	8.6	Two-Dimensional Harmonic Oscillator 324	
	8.7	Linear Combination of Atomic Orbitals (LCAO) Approximation 331	
	8.8	Density of States in Various Dimensions 336	
PART	II II FUR	THER DEVELOPMENT OF THE THEORY D APPLICATIONS TO PROBLEMS IN REE DIMENSIONS	347
PART	II III FUR Ani Thr	THER DEVELOPMENT OF THE THEORY O APPLICATIONS TO PROBLEMS IN	347 349
PART	II III FUR Ani Thr	THER DEVELOPMENT OF THE THEORY D APPLICATIONS TO PROBLEMS IN REE DIMENSIONS	
PART PART	II ■ FUR ANI THR	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS	
PART PART MIC STORE OF	FUR ANI THR 9 ■ Ang 9.1	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349	
PART NO store.	FUR ANI THR 9 ■ Ang 9.1 9.2	THER DEVELOPMENT OF THE THEORY D APPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators	
PART PART MAY STOCK IN MAY STOCK IN AND	FUR ANI THE S = Ang 9.1 9.2 9.3	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367	
Mig. Phythsuba: Mg. Phythsuba: (14 MM) Ricess	FUR ANI THR 9 Ang 9.1 9.2 9.3 9.4 9.5	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367 Addition of Angular Momentum 386	
Mig. Phythsuba: Mg. Phythsuba: (14 MM) Ricess	FUR ANI THR 9 Ang 9.1 9.2 9.3 9.4 9.5	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367 Addition of Angular Momentum 386 Total Angular Momentum for Two or More Electrons 396	349
Max Maxilsober Maxilsober Maxilsober Maxilsober	9 Ang 9.1 9.2 9.3 9.4 9.5 10 Prol 10.1	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367 Addition of Angular Momentum 386 Total Angular Momentum for Two or More Electrons 396 blems in Three Dimensions The Free Particle in Cartesian Coordinates 404 The Free Particle in Spherical Coordinates 410	349
Min mos. o Min withithe	FUR ANI THE SPECIAL SP	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367 Addition of Angular Momentum 386 Total Angular Momentum for Two or More Electrons 396 blems in Three Dimensions The Free Particle in Cartesian Coordinates 404 The Free Particle in Spherical Coordinates 410 The Free-Particle Radial Wavefunction 415	349
Min mos. o Min withithe	FUR ANI THR 9 Ang 9.1 9.2 9.3 9.4 9.5 10 Prol 10.1 10.2 10.3 10.4	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367 Addition of Angular Momentum 386 Total Angular Momentum for Two or More Electrons 396 blems in Three Dimensions The Free Particle in Cartesian Coordinates 404 The Free Particle in Spherical Coordinates 410 The Free-Particle Radial Wavefunction 415 A Charged Particle in a Magnetic Field 430	349
Min mos. o Min withithe	FUR ANI THE SPECIAL SP	THER DEVELOPMENT OF THE THEORY DAPPLICATIONS TO PROBLEMS IN REE DIMENSIONS ular Momentum Basic Properties 349 Eigenvalues of the Angular Momentum Operators 358 Eigenfunctions of the Orbital Angular Momentum Operators \hat{L}^2 and \hat{L}_z 367 Addition of Angular Momentum 386 Total Angular Momentum for Two or More Electrons 396 blems in Three Dimensions The Free Particle in Cartesian Coordinates 404 The Free Particle in Spherical Coordinates 410 The Free-Particle Radial Wavefunction 415	349

	10.8	Thomas–Fermi Model 472	
11	Elem	ents of Matrix Mechanics. Spin Wavefunctions	480
		Basis and Representations 481	
	11.2	Elementary Matrix Properties 488	
	11.3		492
	11.4	The Energy Representation 499	
	11.5	Angular Momentum Matrices 504	
	11.6		
	11.7	Free-Particle Wavefunctions, Including Spin 517	
	11.8	The Magnetic Moment of an Electron 519	
	11.9	Precession of an Electron in a Magnetic Field 527	
	11.10	The Addition of Two Spins 536	
	11.11	The Density Matrix 543	
	11.12	Other "Pictures" in Quantum Mechanics 553	
	11.13	Polarization States. EPR Revisited 558	
	11.14	The Transfer Matrix 571	
12	Appl	lication to Atomic, Molecular, Solid-State, and	
	Nuc	lear Physics. Elements of Quantum Statistics	579
	12.1	The Total Angular Momentum, J 579	
	12.2	One-Electron Atoms 584	
	12.3	The Pauli Principle 597	
	12.4	The Periodic Table 602	
	12.5	The Slater Determinant 612	
	12.6	Application of Symmetrization Rules to the Helium Atom 614	
	12.7		
	12.8	Brief Description of Quantum Models for Superconductivity and Superfluidity 630	
	12.9	Impurity Semiconductors and the <i>p-n</i> Junction 641	
	12.10	Elements of Nuclear Physics. The Deuteron and Isospin 669	
13	l Pert	urbation Theory	68
	13.1	Time-Independent, Nondegenerate Perturbation Theory 681	
	13.2	Time-Independent, Degenerate Perturbation Theory 692	
	13.3	The Stark Effect 700	
	13.4	The Nearly Free Electron Model 703	
	13.5	Time-Dependent Perturbation Theory 709	
	13.6	Harmonic Perturbation 712	

10.7 Elementary Theory of Radiation 463

	Conte	nts	X
	13.7 13.8 13.9 13.10	Application of Harmonic Perturbation Theory 718 Selective Perturbations in Time 727 Atom-Radiation Interaction 739 Hartree–Fock Model 757	
14	Scati	tering in Three Dimensions	762
д д 10000	14.1	Partial Waves 762	,
		S-Wave Scattering 770	
		Center-of-Mass Frame 774	
		The Born Approximation 777	
	14.5	Atomic-Radiative Absorption Cross Section 782	
	14.6	Elements of Formal Scattering Theory. The Lippmann–Schwinger Equation 785	
15	Rela	tivistic Quantum Mechanics	79 3
	15.1	· ·	
	15.2	Klein–Gordon Equation 798	
		Dirac Equation 800	
	15.4	Electron Magnetic Moment 806	
	15.5	Covariant Description 810	
16	l Qua	ntum Computing	81
	16.1	Binary Number System 817	
	16.2	Logic Gates 823	
	16.3	Turing Machine and Complexity Classes 830	
	16.4	Qubits and Quantum Logic Gates 832	
	List	of Symbols	84
	APP	ENDIXES	84
A I	I Add	itional Remarks on the \hat{x} and \hat{p} Representations	84
В	I Spin	and Statistics	85
C I	I Rep	resentations of the Delta Function	85

861

D Differential Vector Relations